NewMDSX    

 

 

 

NewMDSX Index

Home

News

NewMDSX

Consultancy

NewMDSX Registration

HAMLET Registration

Purchase

Download

Technical Support

MS-DOS Version SV4

Constituent Programs and Free Downloads

Documentation

Background

Project Team

Links

Contact

New MDSX CONSTITUENT PROGRAMS AND DOWNLOADS

Free MS DOS versions of the MDSX Library of programs with supporting documentation are available download where indicated

Notes for each program:  
  Program: As named by originator
  Source: Source of original program (numerical sub-routines etc. updated by MDSX staff)
  Data: Usually: Way and Mode (see Carroll & Arabie)
  Model: As specified by originator's documentation
  Transform: Transformation Function, also called Level of Measurement
  Int/External External (with user-supplied configuration), or internal (derived from input data) analysis
  Hierarchy: Single program, or hierarchy of models/phases
  Representation: How mode/s are represented in the configuration according to the model
  TUG: Section of The User's Guide to Multidimensional Scaling in which the program is discussed
    N.B. All programs are also separately documented in the User Manual
     

Program name & [source]

Description 

PRELIMINARY

Downloads

 

Information about the MDSX series; Running MDSX programs; Attribution; 

BBDIAM 

Source: Brusco

 

Branch and Bound DIAMeter clustering

DATA: 2-Way 1-Mode

MODEL: Partition Clustering

TRANSFORMATION: Ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Exclusive clusters

 

CANDECOMP  

Bell Labs

 

Downloads

 

CANonical DECOMPosition

DATA: internal analysis of a set of 3- to 7-way data matrix of (dis) similarity matrices,

MODEL: Product: Vector, Scalar Products, Factor, Composition

TRANSFORMATION: metric/linear.

INT/EXTERNAL: I & E

HIERARCHY: n

REPRESENTATION: Unidimensional Scale values for each way

TUG: 7.1.1, 7.2.2

 

CONPAR 

Brusco

 

CONcordance PARtitioning

DATA: Internal analysis of a set of three-way (2-mode) data matrix consisting of a set of (dis)similarity matrices

MODEL: A two part model: 1) Subjects are partitioned into homogeneous clusters, using BBDIAM (q.v.) and an aggregate dissimilarity matrix produced for each cluster..  2)Each cluster's data rae scaled using MINISSA Distance scalings

TRANSFORMATION: Ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: separate scalings

 

CORRESP

Brier

 

CORRESPondence analysis

DATA: 2-Way 2-mode table (set of profiles)

MODEL: Chi-square distance

TRANSFORMATION: Ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: N-mode point

 

HICLUS 

Johnson

 

Downloads

 

HIerarchical CLUStering

DATA: two-way (1 mode) (dis) similarity data

MODEL: hierarchical clustering scheme (ultrametric : Diameter & Connectedness solutions)

TRANSFORMATION:  ordinal, non-metric monotonic

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Inclusive partitions / Tree

TUG: 6.1.6

 

INDSCAL-S 

Bell Labs  

Basic 3-way model

Downloads

 

INdividual Differences SCALing - Symmetric

DATA: internal analysis of a three-way (2-mode) data matrix consisting of a set of (dis) similarity matrices

MODEL:  Weighted Euclidean Distance / product composition

TRANSFORMATION: metric/ linear

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Stimulus Points, subject weights

TUG: 7.1.1, 7.2, A7.2

 

MDPREF

Bell Labs

 

Downloads

MultiDimensional PREFerence Scaling

DATA: internal analysis of two-way, 2-mode data of either a set of paired comparisons matrices or a rectangular, row-conditional matrix of ratings/rankings

MODEL:  Product

TRANSFORMATION: linear

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Stimulus Points, subject vectors

TUG: 5.3.2, 6.2.2

 

MDSORT

Takane

 

 

MultiDimensional SORTing

DATA:  two-way, 2-mode categorical data (set of sortings)

MODEL:  product

TRANSFORMATION: linear

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Point

TUG: (Coxon 1999)

 

MINI-RSA

Roskam

 

Downloads

 

(Michigan-Israel-Netherlands Integrated = MINI)

Rectangular Smallest space Analysis

DATA: internal analysis of two-way, 2-mode data in a rectangular (row-conditional) matrix of (preference) rankings or ratings

MODEL: Euclidean distance (Unfolding) model

TRANSFORMATION:  ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Point-point

TUG: 5.3.3.1, 6.2.3

 

MINISSA (N)

Roskam

Basic Nonmetric Model

Downloads

[MINI]  Smallest Space Analysis (Nijmegen version)

DATA: internal analysis of a two-way (1mode) symmetric matrix of (dis) similarities

MODEL: Euclidean distance

TRANSFORMATION: Ordinal also called non-metric monotonic

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Point

TUG: Ch. 3

 

MRSCAL

Roskam

 

Downloads

 

MetRic SCALing

DATA: internal analysis of a two-way (1 mode) symmetric matrix of (dis) similarities

MODEL: Minkowski r-metric (default Euclidean distance model)

TRANSFORMATION:  Linear and Log-interval

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Point

TUG: 6.1.4

PARAMAP

Bell Labs

 

 

PARAmetric MAPping

DATA: Two-way, 2-mode data (Profiles)

MODEL: Smoothness

TRANSFORMATION: Continuity

INT/EXTERNAL: I, E

HIERARCHY: n

REPRESENTATION: Points (1 mode)

TUG: 5.2.2, 6.1.5

 

PINDIS

Roskam Lingoes

 

Downloads

Procrustean INdividual DIfferences Scaling (Hierarchy)

DATA: Two-way 2-mode Configuration Co-ordinates

MODEL: Hierarchy of Procrustean Fitting models (general distance and general vector)

TRANSFORMATIONS: Similarity, then progressively more complex

INT/EXTERNAL: I, E

HIERARCHY: y (6 models)

REPRESENTATION: Point (dist.), Vector

TUG: 7.3 - 7.6, A7.1

 

PREFMAP

Bell Labs

 

Downloads

PREFerence MAPping (Hierarchy)

DATA: external (and quasi-internal) analysis of two-way, 2-mode row- conditional data (usually a preference measure)

MODEL: 3 general distance and 1 vector models

TRANSFORMATION: Linear, ordinal

INT/EXTERNAL: E, I

HIERARCHY: y 4

REPRESENTATION: Point, vector

TUG: 4.2, 4.4, 6.2.1, 7.5

 

PROCRUSTES

Roskam Lingoes

 

 

PROCRUSTEan Similarity (=PINDIS0)

DATA: 2-way 2-mode Configuration Co-ordinates

MODEL: Euclidean Distance

TRANSFORMATION: Similarity (Reflection, Rotation, Uniform re-scaling)

INT/EXTERNAL: I,E

HIERARCHY: n

REPRESENTATION: Point (dist.)

TUG: A7.1

 

PRO-FIT

Bell Labs

 

Downloads

 

PROperty FITting

DATA: external analysis of a configuration, using 2-way 2-mode rectangular matrix of property ratings or rankings

MODEL: scalar products (vector)

TRANSFORMATION: either a linear or continuity

INT/EXTERNAL: E

HIERARCHY: n

REPRESENTATION: vector

TUG: 5.22, 6.2.1

 

TRISOSCAL

Roskam-Prentice

 

Downloads

 

TRIadic Similarities Ordinal SCALing

DATA: internal analysis of a set of triadic (dis) similarity measures

MODEL: Minkowski distance

TRANSFORMATION: Ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: point

TUG: 2.1.4, 6.1.3

 

CONJOINT (Formerly UNICON)

Roskam

 

 

 

CONJOINT measurement (UNICON, ADDIT, MONANOVA)

DATA: N-way table

MODEL: Simple composition models

TRANSFORMATION: Ordinal

INT/EXTERNAL: I

HIERARCHY: n

REPRESENTATION: Unidimensional scale values for each way

TUG: 5.3.1, 6.1.8

 

WOMBATS 

[Coxon-Sykes]

 

Downloads

 

Work Out Measures Before Attempting To Scale (Utility)

DATA: From rectangular raw data matrix 

Computes one or more measures of dis/similarity , and

Outputs in a user-chosen matrix format

(for input into MDSX and other programs)

MODEL: Dis/similarity Measures

TUG: 2.2

 

 

Programs in the  original MDSX (SV3.2) Library not included, but still available:

MINICPA        (GLR: [MINI]  Conditional Proximity Analysis).

MVNDS          (BL:     Shepard’s Maximum Variance Non-Dimensional Scaling)

PARAMAP      (BL:     Carroll’s PARAmetric MAPping)

UNICON        (GLR: UNIdimensional CONjoint measurement)

CONCOR       (Arabie: CONvergence of iterated CORrelations: blockmodel  analysis through the production of the image matrices)

 

Home

Top of Page